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I. INTRODUCTION

There is a growing number of images and are analyzed by
machines rather than humans. This enables object detection,
semantic segmentation, and other machine vision tasks to be
used in artificial intelligence systems and assist our daily
life. However, these models present substantial computational
challenges because of deep neural networks and large data
sets. Therefore, we usually run these networks remotely after
compressing and transmitting data to a remote end. However,
the decompressed images are distorted, which will affect the
accuracy of the following tasks.

Classical image compression standards, such as, JPEG [1],
HEVC/H.265-intra [2], FLIF [3] have achieved very good
results in human perception. On the other hand, some learned
end-to-end image compression methods [4], [5], [6] are pro-
posed. These methods achieve and even surpass the state-of-
the-art classical compression standards.

However, many challenges still exist with these approaches.
Firstly, these methods are specifically designed for human
vision that has a gap with machine vision [7]. Therefore,
the decompressed images obtained by these methods may not
achieve optimal results on machine vision tasks. Secondly, the
image reconstruction may introduce latency and computation.
The current commonly used pixel-based scheme is shown in
Fig. 1. We input images to an encoder for compression and en-
coding in the beginning, after that, the bitstream is transmitted
to the decoder for decoding to get the decompressed images
which are used for finishing machine vision tasks at last.
However, decoders in this scheme usually consist of multiple
layers of transposed convolution [4] or pixel shuffle [6] which
leads to a lot of computation.

Some pixel-based methods [8], [9] that can improve ma-
chine vision are proposed. But these methods can not solve the
second problem. On the other hand, some related standards,
such as Video Coding for Machine (VCM) [7] and JPEG AI
[10] which uses the compressed domain to learn are gradually
being established to address these problems. However, both
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Fig. 1: Traditional pixel domain-based framework.

standards currently provide only a simple framework, which
is not effective if used directly. There are still many details
that can be modified and improved.

In this paper, we propose an end-to-end multiple tasks
scheme of learning in the compressed domain. The main
contributions of this paper are as follows:
• We introduce a gate module to adaptively select suitable

partial compression domain features and reduce the re-
quired bit rate while maintaining the same accuracy of
machine vision tasks.

• We improve the accuracy of machine vision tasks by
using a knowledge distillation approach.

• We explore a new training strategy that makes our scheme
scalable, allowing us to add other machine vision tasks
without affecting the existing machine and human vision
tasks.

• The results of experiments show that our method is
superior to the state-of-the-art pixel-domain method [8]
that can take both machine and human vision tasks. In
terms of human vision tasks, PSNR can be improved by
about 0.5dB at the same bitrate. In terms of machine
vision tasks, our method can save up to 80% bit rate with
the same accuracy while significantly reducing about the
34% FLOPs for semantic segmentation and foreground
extraction, 16% FLOPs for object detection.

II. METHOD

A. Framework
Our framework is shown in Fig. 2. This framework is mainly

composed of four parts: an image compression network,
multiple gate modules, transform modules and task networks.
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Fig. 2: The framework of our method. The video analysis tasks (semantic segmentation, object detection and foreground
extraction) are performed in the compressed domain. In the decoder side, the bitstream is first entropy decoded on CPU, and
then the remaining computation is performed on GPU.

Here we use the hyper-prior model in [4] as the image
compression network. It can be formulated as the following
equations:

y = ga(x;φ)

ŷ = Q(y)

x̂ = gs(ŷ; θ)

z = ha (y;φh)

ẑ = Q(z)

µy, σy = hs (ẑ; θh)

(1)

where the first three equations represent main path and the
last three are hyper-prior part. x is an input image while ga
means the analysis transform that convert x to the compressed
representation y. Q represents the quantization which is ap-
proximated by a noise U

(
− 1

2 ,
1
2

)
during training, and is a

rounding operator during inference. At last, the decompressed
image x̂ is generated by the synthesis transform gs. To capture
spatial dependencies, hyper-prior path is introduced. It uses y
as input to get side information z by analysis transform ha.
After quantization, the mean µy and scale σy of ŷ are further
obtained by synthesis transform hs, φ, θ, φh, θh are learned
parameters of network ga, gs, ha, hs.

We firstly input an image to the encoder of the compression
network to get the compressed representation ŷ. When we
need to complete the image compression task, according to the
operation mentioned in the previous paragraph, we encode and
transmit it to the decoder end for reconstruction. But if our
task is a machine vision, we use a gate module for selecting
the suitable channels of ŷ to get a selected representation
ŷselected with less entropy so that we can transmit it with a
smaller bit rate. On the other end, to reduce the computation,
we don’t use the decoder of the image compression network
to get a pixel-domain image x̂. Instead, we choose to replace
the first two layers of the machine vision task network with
a transform module, allowing us to learn directly using the

representations of the compression domain. The transform
module consists of two transpose convolution layers and two
IGDN (Inverse Generalized Normalization Transformation). It
is used for transforming the representations of the compression
domain into the features of machine vision tasks.

B. Gate Module

Here we use a gate module to select useful channels of
compressed representation for machine vision tasks. Previous
works [13], [18], [22] have proved that channel selection in
compressed domain can effectively reduce the bit rate. But
some of these methods are only tested in the DCT domain,
rather than the compression domain obtained by the neural
network. Some other methods try to select channels through
some objective metrics such as variance and information
entropy. Nonetheless, these selection methods cannot select
the optimal channels because different inputs need a different
number of channels, but these methods can only choose a fixed
number of channels. At the same time, by using these methods,
we can only remove some channels with low entropy, which
has little effect on the bit rate improvement. And it leaves some
channels that are high in entropy but useless for the task still
in the compressed representation.

Different from the above methods, in this paper, we use
a gate module to select channels in the compressed domain
adaptively. Refer to [13], the architecture of the gate module
is designed as shown in Fig. 2. A representation of size
H×W ×C is first transformed into a tensor of size 1×1×C
through an adaptive average pooling layer. And then through
a 1× 1 convolution layer, a batch normalization (BN) layer, a
ReLU layer, and a 1 × 1 convolution layer to get a tensor
whose size is 1 × 1 × C × 2. In this 2 × C number, the
first C number represents the probabilities that C channels
of compressed representation ŷ are sampled as 0 respectively,
while the latter means the probabilities that C channels are
sampled as 1.



Fig. 3: The histogram of assigned bitrates of a compressed
representation before and after channel selection (The enlarged
region indicates that our method is different from the channel
selection method based on variance. We can directly remove
some high-bit-rate but useless channels, instead of removing
low-bit-rate channels in bit-rate order).

(a) (b) (c) (d) (e)

Fig. 4: (a) The original images come from DUTS dataset.
(b)(c) Two channels of the compressed representation of (a).
(d)(e) The output of the second layer of ResNet-50.

We can use Softmax to evaluate which channel is most
likely to be selected and then sample according to this proba-
bility. However, since Softmax results are approximately one-
hot which are not suitable for sampling, so Gumbel Softmax
[13] is used here to solve this problem.

Fig. 3 is the histogram of assigned bitrates of a compressed
representation before and after channel selection. The red parts
represent channels that have been removed. If we choose
according to the method of information entropy or variance, it
means that we can only remove the channels with the lowest
bit rate according to the order of bit rate. Bins of the histogram
resulting from this method will only turn red if all the bins on
the left turn red. However, in our method, we can choose the
most suitable channels adaptively rather than in accordance
with the order of bit rate, which means that we can remove
some useless channels with high bit rate, as shown in the
enlarged area in the figure. When the channels with small bit
rate on the left bins are not completely removed, it can also
remove some channels with larger bit rates on the right.

C. Knowledge Distillation

As be shown in Fig. 4, there is a gap between the rep-
resentation of the compressed domain and the feature of the
middle layer of machine vision. The former contains obvious
structural features, while the latter pays more attention to
texture information. A transform module is added to help
the compressed representation to convert to the feature of the
middle layer in the machine vision networks. Its details are
shown in Fig. 2. It consists of only two transposed convolution
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Fig. 5: The knowledge distillation approach on ResNet-50.

layers and two IGDNs, which make its output size the same
as the input size required by machine vision networks. For
example, if the original image’s size is 512 × 768 × 3,
after the encoder and gate, we can get ŷselected whose size
is 32 × 48 × Cselected, where Cselected means the number
of selected channels. After passing through this transform
module, its size increases by 4 times, and channels are changed
to 64, becoming 128×192×64 which is equal to the input size
of the machine vision task. Because of the neural network of
machine vision here we have removed the first two layers,
therefore, we input from the third layer, which means the
input size of the task net has changed from 512 × 768 × 3
to 128× 192× 64.

In order to enable the transform module to better learn
how to convert compressed representation to the appropriate
features for machine vision tasks, we introduce a knowledge
distillation approach. The process is shown in Fig. 5. To
accomplish this knowledge distillation, we have two neural
networks here, a teacher network and a student network. The
former is a network pre-trained by the original image and the
weights are frozen. The latter network is a backbone whose
first two layers are replaced with a transform module. During
the training, the selected compressed domain representation
ŷselected is input into the student network, and the middle-layer
features Fm are obtained through the transform module. The
original image x is input to the teacher network, after it passes
the first two layers, we can get the middle-layer features Fgt.
Here, we take this feature as a ground truth, and get the loss
LKD by calculating the MSE between Fm and the ground
truth Fgt. By backpropagating this loss, the student network
can learn more effective features. The loss LKD is expressed
as the following equation:

LKD =MSE (Fm,Fgt) (2)

Finally, the loss Lm of the machine vision task becomes:

Lm = λ1Lmoriginal
+ λ2LKD (3)

where Lmoriginal
represents the original loss of the machine

vision task, such as MSE loss, IoU loss and so on. λ1, λ2 are
used for balancing the two losses.

D. Training Strategy

It has been proved that combined training compression
network and task network can achieve better machine vision
effect [17]. However, some machine vision tasks require data
augmentations to achieve better results. For example, during
the training of object detection, images are scaled up or down



to make them more robust when facing images of different
sizes during inference. Nevertheless, scaling up the image has
a negative effect on the training of the image compression
task. Here, we want to implement a framework in JPEG AI
[10] that can simultaneously implement multiple machine task
vision tasks as well as human vision tasks. Therefore, we use
a training strategy here to resolve the contradiction between
the two tasks, so as to achieve better PSNR of human vision
task while improving the accuracy of machine vision tasks.

In order to maintain the effect of both the machine vision
task and the human vision task, similar to [8], [17], we divided
the machine vision tasks we needed to implement into primary
and secondary tasks. The primary tasks are usually those tasks
whose training methods are similar to image compression,
such as semantic segmentation, foreground extraction and
so on. For the primary task, we jointly train it with the
compression network, and the loss can be expressed as:

Lprimary = Lm + λ3MSE(x, x̂) + λ4R (4)

where
R =E

[
− log2

(
pŷ|ẑ(ŷ | ẑ)

)]
+

E
[
− log2

(
pẑ|ψ(ẑ | ψ)

)] (5)

where the last two items in (4) are the loss of image
compression, where the former represents the distortion of
decompressed images while the latter R represents the bit rates
of ŷ and ẑ. Since there is no prior for ẑ, a factorized density
model ψ is used to encode ẑ.

After completing the joint training of the primary task and
the image compression task, we fixed the weights of these
networks. The following machine vision task we added to this
scheme are called secondary tasks. Their input comes from
the compressed domain representation, which is the output of
the encoder that has been trained by the primary task and the
image compression task. We can add any number and any
type of secondary tasks, because the weight of the encoder
part has been fixed, and the training of the secondary task
will not affect the effect of the image compression task and
the primary task. The loss Lsecondary,i of secondary tasks i
can be expressed as:

Lsecondary,i = SG(Lm,i;φ, φh) (6)

where SG is the stop-gradient operator so that the encoder
parameters φ and φh are not updated during the training of
secondary tasks.

III. EXPERIMENTS

A. Experiment settings

For the image compression network, we use the hyperprior
model in [4] here. For machine vision tasks in order to verify
the effectiveness of our framework, we carried out experiments
on three different machine vision tasks, namely semantic
segmentation, object detection and foreground extraction. For
all of these three cases, we use ResNet-50 as the backbone,
and then add the specific layers for each task.

1) Semantic Segmentation: We utilize Deep Lab V3 [23]
which is a classical network for segmentation tasks. The
Cityscapes dataset [24] is used for training and evaluation. We
use cross entropy as a loss during training. Mean intersection
over union (mIoU) is used as the metric of effectiveness.

2) Foreground Extraction: The Deep Lab V3 is also used
for foreground extraction. Since this task only needs to dis-
tinguish a pixel in the foreground or background, and don’t
need to distinguish which object the pixel is, we can use 0,1
to represent either background and foreground. Therefore, a
sigmoid layer is added at the last layer of Deep Lab V3. This
task is trained and evaluated on DUTS dataset [25]. Dice loss
is used in the training process. And the results are measured
by Mean Absolute Error (MAE).

3) Object Detection: Faster RCNN [26] is used for object
detection. And the Pascal VOC 07+12 train sets [27] are
utilized to train, while the Pascal VOC 07 test set is used
for testing. The shortest edge is scaled up to 640 in the test.
we measure the results by using Average precision (AP).

4) Training Setup: In order to accelerate convergence, we
use two training tricks. Firstly, all training is based on the
pre-training models, in which the pre-training model of the
compression network is come from CompressAI [28], and the
pre-training of the machine vision task network is completed
separately based on the corresponding data sets. The other
point is, in the early stages of training, about 10% of the total
number of iterations, we only train with the loss of knowledge
distillation LKD. For all the training tasks here, we chose
Adam as the optimizer. The initial learning rate is 1e-4, and
drops to 1e-5 and 1e-6 at 70% and 90% of the total epochs,
respectively. For semantic segmentation, object detection and
foreground extraction, we trained 800, 100 and 300 epochs on
a GeForce RTX 3090 GPU with 24 GB RAM respectively.
And all of these tasks’ batch sizes are set as 4. λ1, λ2, λ4 are
fixed as 1, 1, 1 while λ3 is used for adjusting bitrate.

In the following experiments, “Informed from the primary
task” is used for indicating what the primary task is if the
current task is not trained as the primary one. For example,
“Informed from Seg” indicates that the primary task is seman-
tic segmentation, and ”Informed from Foreground” indicates
that the primary task is foreground extraction.

B. Human Vision Task

Refer to [18], [29], we also test the PSNR on machine vison
dataset. The results is shown in Fig. 6. Since our compression
model is based on the hyperprior model, we compare the
original hyperprior model which is pretrained by CompressAI
with our hyperprior model jointly trained by a machine vision
task. It can be seen that the PSNR after joint training is
comparable and even superior to the original model, especially
in the cases of low bit rate. At the same bit rate, PSNR
can be improved by about 0.5dB in the cases of low bit
rate. The results are similar whether we make foreground
extraction or semantic segmentation as the primary task, which
proves the robustness of our model. This also suggests that the
introduction of machine vision tasks, if trained in the right



0.0 0.5
Bitrate (/bpp)

25

30

35

PS
NR

 (/
dB

)

Cityscapes

0.0 0.2 0.4
Bitrate (/bpp)

30

35

40

PS
NR

 (/
dB

)

DUTS

Primary task
hyperprior [4]

JPEG
WebP

Fig. 6: The PSNR comparison (The left one is based on
Cityscapes dataset when the primary task is semantic segmen-
tation, the right one is based on DUTS test dataset when the
primary task is foreground extraction.)

way, can improve human vision tasks to some extent, because
the labels of machine vision tasks give us more information.
For example, if we jointly train semantic segmentation task
and image compression task, due to the label of semantic
segmentation, we can clearly know the edge information of
each image, which can help us improve the image compression
task. On the other hand, we also compare with some classical
compression methods, such as JPEG and WebP. The results
show that our method is superior to these two methods.

C. Machine Vision Task

Here, we take foreground extraction and semantic seg-
mentation as the primary task, while foreground extraction,
semantic segmentation and object detection as the secondary
task. The results are shown in Fig. 7. The three tasks were
evaluated by MAE, mIoU and AP respectively. The lower
value of the first metric is, the better effect of the task is,
while the higher value of the latter two is, the better effect
is. [8] proposed the a pixel-based method that can improve
machine vision while maintaining the effect of the human
vision task. They name their method as task-finetune (T-
FT). Here we use this approach to improve the hyperprior
model as a comparison for our approach. We can see that our
method achieves better results than T-FT at any bit rate when
the task is the primary task. When the task is a secondary
task, it also outperforms T-FT at most bit rates, especially at
low bit rates. In another word, our method can save up to
80% bit rate with the same accuracy. In addition, we make a
comparison with the inference made directly on the original
image compression model (the inference method in Fig. 1)
without using any improving method like [8]. Our approach is
a huge improvement over the original hyperprior [4]. Because
the training of the compression network has been aimed at
human vision, its performance on machine vision tasks is not
good. It can also be seen that, even the Cheng’s network
[6] which is more advanced than hyperprior is inferior to
that of our method based on hyperprior. This also illustrates
the previous point, there is a gap between human vision and
machine vision. And our approach can bridge the gap between
human vision and machine vision.

On the other hand, for the object detection task, we obtain
better results than T-FT in both cases informed from fore-
ground and segmentation, which indicates that this framework
is robust, different primary tasks can make the secondary tasks
achieve similar effects. Another point worth noting is that
Cheng’s method outperforms hyperprior using T-FT for this
task, a result that is reversed from the semantic segmentation
task, suggesting that there may also be large differences
between two different machine vision tasks. But our model
works well for different tasks.

D. Ablation Study

To verify the validity of the gate module and knowledge
distillation loss, we conduct ablation studies on the semantic
segmentation task when primary is foreground extraction, and
the results are shown in Fig. 8.

It can be seen that the model performs worst without
knowledge distillation loss LKD and gate module. When we
combine the gate and knowledge distillation loss, we can get
the best results.

E. Computational Cost Evaluation

In Table I, we evaluate the computation cost of the three
tasks in the pixel domain method and in our method. The
input of foreground extraction, semantic segmentation and
object detection are RGB images with sizes of 448 × 448,
1024×2048, 1024×1462, respectively. It can be seen that our
method significantly reduces the computational cost by about
16%∼34% of the model compared with the pixel domain-
based method [8].
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[9] L. D. Chamain, F. Racapé, J. Bégaint, A. Pushparaja, and S. Feltman,
“End-to-end optimized image compression for multiple machine tasks,”
arXiv preprint arXiv:2103.04178, 2021.

[10] J. Ascenso, “Jpeg ai use cases and requirements,” in ISO/IEC
JTC1/SC29/WG1 M90014, 2021.
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